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Abstract

System identification of plants with binary-valued output observations is of importance in understanding modeling capability and limitations
for systems with limited sensor information, establishing relationships between communication resource limitations and identification complexity,
and studying sensor networks. This paper resolves two issues arising in such system identification problems. First, regression structures for
identifying a rational model contain non-smooth nonlinearities, leading to a difficult nonlinear filtering problem. By introducing a two-step
identification procedure that employs periodic signals, empirical measures, and identifiability features, rational models can be identified without
resorting to complicated nonlinear searching algorithms. Second, by formulating a joint identification problem, we are able to accommodate
scenarios in which noise distribution functions are unknown. Convergence of parameter estimates is established. Recursive algorithms for joint
identification and their key properties are further developed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

System identification of plants with binary-valued output ob-
servations is of importance in understanding modeling capa-
bility for systems with limited sensor information, establishing
relationships between communication resource limitations and
identification complexity, and studying sensor networks. The
authors introduced in Wang, Zhang, and Yin (2003) a frame-
work in which such identification problems can be rigorously
pursued either in a stochastic setting or a worst-case scenario.
This paper extends the results in two key directions: (a) systems
in Wang et al. (2003) are finite impulse response models. Due
to nonlinearity in output observations, switching (non-smooth)
nonlinearity enters the regressor for rational models, leading

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Antonio
Vicino under the direction of Editor Torsten Söderström.

∗ Corresponding author.
E-mail addresses: lywang@wayne.edu (L.Y. Wang),

gyin@math.wayne.edu (G.G. Yin), jif@iss.ac.cn (J-F. Zhang).

0005-1098/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2005.12.004

to a difficult problem of nonlinear filtering. By introducing a
two-step identification procedure that employs periodic sig-
nals, empirical measures, and identifiability features, rational
models can be identified without resorting to complicated
nonlinear searching algorithms. (b) Identification algorithms
in Wang et al. (2003) assume knowledge of noise distribution
functions. Unlike traditional identification problems where
actual noise distribution functions are usually not used in
the algorithms, the identification algorithms for binary-valued
observations use explicitly the noise distribution functions.
Consequently, they do not apply if noise distribution functions
are unknown. Since in practice noise distribution functions
are either unknown or only estimated with limited prior in-
formation, removing this condition is of essential importance.
By formulating a joint identification problem, we are able to
accommodate the situations in which noise distribution func-
tions are unknown. Identification errors and input design are
examined in a stochastic information framework. Convergence
of parameter estimates is established. Recursive algorithms
for joint identification and their basic properties are further
derived.
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This work is based on the premise that the order of the sys-
tem is finite and known. For infinite dimensional systems that
are approximated by finite dimensional models, the problem of
unmodeled dynamics and model complexity becomes an essen-
tial issue. This has been studied in Wang (1997); Wang and Yin
(1999, 2000, 2002) for system identification with regular sen-
sors, and in Wang et al. (2003) for system identification with
binary-valued sensors. Estimating the order of the system is a
worthwhile direction, but beyond the scope of this paper.

The paper is organized as follows. The main problem is for-
mulated in Section 2. Our development starts in Section 3 with
estimation of plant outputs when noise distribution functions
are known. The main tool is empirical measures and their con-
vergence. Section 4 establishes the main results on identifiabil-
ity of plant parameters. A basic property of rational systems is
established. It shows that if the input is periodic and full rank,
system parameters are uniquely determined by its periodic out-
puts. Consequently, under such inputs, convergence of param-
eter estimates can be established when the convergence results
of Section 3 are utilized. Section 5 is devoted to the general
scenario where noise distribution functions are unknown and
must be estimated. Identification of distribution functions and
system parameters are intimately intertwined. Together, they
form a nonlinear identification problem. Algorithms for iden-
tifying jointly plant parameters and distribution functions are
introduced. It is shown that under some mild conditions, con-
vergence of both estimates can be established when one uses
signal scaling and threshold shifting to leverage on providing
excitation for parameter estimation. A simple application exam-
ple is given in Section 6 to summarize the main steps of identi-
fication experimental design, identification algorithms, and ac-
curacy evaluation developed in this paper. For computational
efficiency, recursive algorithms for joint identification are pre-
sented in Section 7. Some brief concluding remarks are made
in Section 8.

For some related but different identification algorithms such
as binary reinforcement and some applications, the reader is re-
ferred to Caianiello and de Luca (1966), Chen and Yin (2003),
Elvitch, Sethares, Rey, and Johnson (1989), Eweda (1995),
Gersho (1984), Pakdaman and Malta (1998), Yin, Krishna-
murthy, and Ion (2003). The main tools for stochastic analysis
and identification methodologies can be found in Billingsley
(1968), Chen and Guo (1991), Feller (1968, 1971), Kushner and
Yin (2003), Ljung (1987), Pollard (1984), Serfling (1980). This
paper is a continuation of the authors’ early work in Wang et
al. (2003), Wang (1997); Wang and Yin (1999), Wang and Yin
(2000, 2002).

2. Problem formulation

Consider the following system:

yk = G(q)uk + dk = xk + dk , (1)

which is in an output error form. Here, q is the one-step
shift operator quk = uk−1; {dk} is a sequence of random noise

(sensor noise); xk = G(q)uk is the noise-free output of the
system; G(q) is a stable rational function of q

G(q) = B(q)

1 − A(q)
= b1q + · · · + bnq

n

1 − (a1q + · · · + anqn)
.

The input {uk} is uniformly bounded by |uk|�umax and can
be selected by the designer otherwise. The observation {yk} is
measured by a binary-valued sensor of threshold C > 0,

sk = I{yk �C} =
{

1, yk �C,

0, yk > C,
(2)

where IA is the indicate function of the set A. The parameter
� = [a1, . . . , an, b1, . . . , bn]T is to be identified.

For system identification, the system (1) is commonly ex-
pressed in its regression form

yk = A(q)yk + B(q)uk + (1 − A(q))dk = �T
k � + d̃k , (3)

where �T
k = [yk−1, . . . , yk−n, uk−1, . . . , uk−n], and d̃k =

(1−A(q))dk . The equation error {d̃k} may not be independent
even if {dk} is.

Most identification algorithms, especially recursive ones,
have been developed from the observation structure (3). Di-
rect application of this structure in our problem encounters a
daunting difficulty since yk is not directly measured. Using sk
in this structure inevitably introduces nonlinearities that make
it harder to design feasible algorithms and to establish their
fundamental properties such as convergence, accuracy and
robustness.

In this paper, we develop a new approach that involves two
steps: (i) first, xk is identified on the basis of sk; (ii) � is iden-
tified from the input uk and estimated xk , using the structure
(3). The first step is accomplished by using periodic inputs
and empirical measures. The second step is validated by using
identifiability arguments and computed by recursive algorithms.
Convergence of the algorithms will be derived. This approach
will first be presented for the case of known noise distributions
in Sections 3 and 4. It will then be extended to handle unknown
noise distributions in Section 5.

3. Estimation of xk: known noise distribution

To estimate xk , select uk to be 2n-periodic. Then the noise-
free output xk = G(q)uk is also 2n-periodic, after a short tran-
sient duration.1 Hence, xj+2ln = xj , for any positive integer l.
{xk} will be determined entirely by 2n unknown real numbers
�j , j = 1, . . . , 2n,

xj = �j , j = 1, . . . , 2n. (4)

� = [�1, . . . , �2n]T are to be estimated.

1 Since the system is assumed to be stable, all transient modes decay
exponentially, much faster than the convergence of the empirical measures. As
a consequence, their impact is negligible and will be ignored in the analysis.
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Consequently, for each j = 1, . . . , 2n the observations can
be expressed as

yj+2ln = xj+2ln + dj+2ln = �j + dj+2ln, l = 0, 1, . . . . (5)

When yk in (5) is directly measured and {dk} is a sequence of
independent and identically distributed (i.i.d.) random variables
with zero mean, estimating �j is easily achieved by averaging.
Complication arises when yk is only measured by binary obser-
vations. This paper resorts to empirical measures for resolving
this problem.

3.1. Empirical measures

Assumption A1. {dk} is a sequence of i.i.d. random variables
whose distribution function F(·) and its inverse F−1(·) are
continuous and known. If the distribution F(·) has a density
with a finite support, then F(·) and F−1(·) are both continuous
in the interior of this finite set. The moment generating function
of d1 exists.

Note that in Assumption A1, we have assumed that the noise
has a continuous distribution function, the distribution function
is invertible, and the inverse is also continuous. A typical ex-
ample of the noise that satisfies Assumption A1 is a sequence
of Gaussian random variables. The second part of the assump-
tion deals with random variables whose distribution function
is only invertible in a finite interval [−�, �] (e.g., uniform dis-
tribution). In this case, we require both the distribution and its
inverse be continuous on (−�, �). The continuity assumption
on the distribution function of the noise is not a restriction.
When one deals with discrete random variables, suitable scal-
ing and the well-known central limit theorem lead to normal
approximation.

Relationship (5) indicates that for a fixed j, �j is an un-
known constant, and empirical measures can be calculated
with respect to index l. Let the observation length be N =
2nm for some positive integer m. For a given j = 1, . . . , 2n,
define

�j
m = 1

m

m−1∑
l=0

sj+2ln. (6)

Note that the event {sj+2ln = 1} = {yj+2ln �C} is the same as
the event {dj+2ln �C − �j }. Then �j

m is precisely the value
of the m-sample empirical distribution F̂m(z) of the noise d at
z = C − �j .

The well-known Glivenko–Cantelli Theorem (Billingsley,
1968, p. 103), guarantees convergence of �j

m. These results are
listed in Lemma 1 without proof.

Lemma 1 (Billingsley, 1968; Pollard, 1984). Under Assump-
tion A1, (a) for any compact subset S ⊂ R,

lim
m→∞ sup

z∈S

|F̂m(z) − F(z) | → 0, w.p.1;

(b) let K̂m(z) = √
m(F̂m(z) − F(z)), for each z ∈ S.

Then K̂m(·) converges weakly to K(·), a stretched Brownian
bridge process such that the covariance of K(·) is given by
EK(z1)K(z2) = min{F(z1), F (z2)} − F(z1)F (z2) for z1 and
z2 ∈ S.

The uniform convergence in Lemma 1 is stronger than what
is needed in this paper. Point-wise convergence of F̂m(z) at
z = C − �j , j = 1, . . . , 2n will suffice.

Note that a Brownian bridge is a function of a Brownian mo-
tion defined on [0, 1]. Loosely speaking, it is a Brownian mo-
tion tied down at both end points of the interval [0, 1]. Between
the two end points, the process evolves just as a Brownian mo-
tion. Now in the current case, since �j can take real values out-
side [0, 1], the Brownian bridge becomes a stretched one. The
terminology “stretched Brownian bridge” follows from that of
Pollard (1984).

Example 1. To illustrate the convergence of empirical mea-
sures, consider a uniformly distributed noise on [−1.2, 1.2].
The actual distribution function is F(z) = (z + 1.2)/2.4. For
different values of z, Fig. 1 shows convergence of the empiri-
cal measures at several points in [−1.2, 1.2] when the sample
size is increased gradually from N = 20 to N = 1000.

3.2. Estimation of �j

To proceed, we first construct an estimate of �j , which will
then be used to identify the system parameter �. Since F(·) is
invertible and known, we define

�̂j
m = C − F−1(�j

m). (7)

Theorem 1. Under Assumption A1,

�̂j
m → �j , w.p.1 as m → ∞.

Proof. By Lemma 1, as m → ∞,

�j
m → F(C − �j ), w.p.1.

Hence, continuity of F−1(·) implies that F−1(F̂m(C − �j )) →
C − �j w.p.1. Therefore,

F−1(�j
m) → C − �j , w.p.1,

or equivalently C − F−1(�j
m) → �j w.p.1. �

Example 2. Consider the case �j = 2.1: yk = 2.1 + dk and
the sensor threshold C = 3.5. The disturbance is uniformly
distributed in [−2, 2]. Fig. 2 shows estimates of �j as a function
of sample sizes.
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Fig. 1. Convergence of empirical measures on different setpoints.
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Fig. 2. Convergence of estimates of �j .

4. Estimation of parameter �

Under a periodic input u, the one-to-one mapping between
� and the periodic output x of the system G will be first estab-
lished. This relationship will be used to derive an estimate of
� from that of x.

4.1. Parameter identifiability

Recall that

xk = G(q)uk = b1q + · · · + bnq
n

1 − (a1q + · · · + anqn)
uk

or in a regression form

xk = �T
k �, (8)

where �T
k = [xk−1, . . . , xk−n, uk−1, . . . , uk−n], and � =

[a1, . . . , an, b1, . . . , bn]T. Then under a 2n-periodic input, the
noise-free output x and system parameters � are related by

X = ��

with

X = [xk0 , . . . , xk0+2n−1]T,

� = [�k0
, . . . ,�k0+2n−1]T. (9)

Apparently, if � is full rank, then there is a one-to-one corre-
spondence between x and �.

Since � contains both input uk and output xk , in general,
the invertibility of � depends on both uk and xk , hence on
the true (but unknown) plant G(q). Furthermore, the invert-
ibility may also vary with the starting time k0. However, it
will be shown that such complications dissipate when uk is
2n-periodic.

Definition 1. A periodic signal vt of period l is said to
be full rank if its discrete Fourier transform V (	k) =∑l

t=1 vte−i	k t /
√

l is nonzero at 	k = 2
k/l, k = 1, . . . , l.

Theorem 2. Suppose that the pair D(q)= 1 −A(q) and B(q)

are coprime. If uk is 2n-periodic and full rank, then
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(a) � given by (9) is invertible for all k0.
(b) ‖�−1‖ is independent of k0, where ‖ · ‖ is the largest sin-

gular value. Hence, �=‖�−1‖ < ∞ is a constant for all k0.

Proof. (a) The proof will follow from some arguments of iden-
tifiability.

The true plant G(q) is of order n with transfer func-
tion G(q) = (b1q + · · · + bnq

n)/(1 − a1q − · · · − anq
n) =

(B(q))/(D(q)), where D(q) and B(q) are coprime polyno-
mials. The observation equation is X = ��. Obviously, � is
invertible if and only if � can be uniquely determined from
the observation equation. Assume that there exists another
nth-order system G̃(q) = B̃(q)/D̃(q), with D̃ and B̃ coprime
and D̃(0) = 1, also satisfying the observation. In particular,
x̃k = (G̃u)k = xk , for k = 1, . . . , 2n. Define

�(q) = G(q) − G̃(q) = B(q)D̃(q) − B̃(q)D(q)

D(q)D̃(q)
:= qN(q)

R(q)
,

where R(q) is a polynomial of order 2n and N(q) a polynomial
of order 2n − 1.

For the given 2n-periodic input u, by hypothesis we have
hk = (�u)k = 0, k = 1, . . . , 2n. It follows that H̃ (	) =
(1/

√
2n)

∑2n
k=1 hke−i	k = 0. On the other hand, by frequency-

domain analysis of the system H̃ (	) = �(ei	)U(	) + R(	),
where U(	) = (1/

√
2n)

∑2n
k=1 uke−i	k and R(	) = 0, for

	 = 2
j/(2n), j = 1, . . . , 2n. By hypothesis, U(	) �= 0,
for 	 = 2
j/(2n), j = 1, . . . , 2n. Hence, �(ei	) = 0, for
	 = 2
j/(2n), j = 1, . . . , 2n. However, since N(q) is of order
2n − 1, if � /≡ 0, �(ei	) can have maximum 2n − 1 finite
zeros. Consequently, �(q) ≡ 0, i.e., G(q) ≡ G̃(q). Now, this
equality, together with the coprimeness of G(q) and G̃(q), im-
plies that there exists a constant c for which B(q)= cB̃(q) and
D(q)= cD̃(q). Finally, D(0)= D̃(0)= 1 implies c = 1. There-
fore, B(q) = B̃(q), D(q) = D̃(q). Namely, B(q) and D(q),
or equivalently �, are uniquely determined by the observation
equation.

(b) For � given in (9), to emphasize on the dependence of
� on k0, we write it as �(k0). To show that ‖�−1(k0)‖ is
independent of k0, we observe that since both uk and xk are
2n-periodic, �(k0 + 1) = J�(k0), where

J =
[

0 I(2n−1)×(2n−1)

1 0

]

is a (2n) × (2n) unitary matrix obtained by permuting
the rows of the identity matrix. As a result, ‖�−1(k0)‖ =
‖J�−1(k0 +1)‖=‖�−1(k0 +1)‖ since the norm ‖·‖ is unitary
invariant. �

Example 3. Suppose that the true system has the transfer func-
tion G(p) = (q + 0.5q2)/(1 − 0.5q + 0.2q2). Hence, the true
plant has the regression model

xk = 0.5xk−1 − 0.2xk−2 + uk−1 + 0.5uk−2.

Since the order of the system is n = 2, we select the input to
be 4-periodic with u1 = 1, u2 =−0.2, u3 = 1.5, u4 =−0.1. For
a selected k0 = 20,

� =
⎡⎢⎣

−1.4884 −0.6889 −0.1000 1.5000
−1.2564 −1.4884 1.0000 −0.1000
−1.2805 −1.2564 −0.2000 1.0000
−0.6890 −1.2805 1.5000 −0.2000

⎤⎥⎦ ,

�−1 =
⎡⎢⎣

−0.8079 −1.9384 1.3004 1.4118
1.0345 0.7749 −1.6066 −0.6619
0.5624 −0.4417 −0.7069 0.9044
0.3776 −1.5969 0.5053 1.1572

⎤⎥⎦ ,

and ‖�−1‖ = 3.8708. It can be verified that for different k0, �
will be different only by permutation of its rows. Consequently,
‖�−1‖ = 3.8708 for all k0.

4.2. Identification algorithms for � and convergence analysis

For each j = 1, . . . , 2n, the estimate �̂j
m of �j can be written

as

�̂j
m = �j + e

j
m,

where, by Theorem 1, e
j
m → 0, w.p.1 as m → ∞.

Define an estimated 2n-periodic output sequence of G(q) by

x̂j+2ln = x̂j = �̂j
m, (10)

for j = 1, . . . , 2n, and l = 1, ..., m − 1. Then

x̂j+2ln = xj+2ln + e
j
m.

To estimate the parameter � we use x̂k in place of xk in (8)

x̂k = �̂
T
k �̂m,

where �̂
T
k = [̂xk−1, . . . , x̂k−n, uk−1, . . . , uk−n]. Then

X̂ = �̂̂�m (11)

for the estimated system, where X̂=[̂xk0 , . . . , x̂k0+2n−1]T, �̂=
[�̂k0

, . . . , �̂k0+2n−1]T. When �̂
T
�̂ is invertible (w.p.1), the es-

timate �̂m is calculated from2

�̂m = (�̂
T
�̂)−1�̂

T
X̂, w.p.1. (12)

We proceed to establish the convergence of �̂m to �.

Theorem 3. Suppose that D(q) and B(q) are coprime. If {uk}
is 2n-periodic and full rank, then

�̂m → �, w.p.1 as m → ∞.

Proof. From x̂j+2ln = xj+2ln + e
j
m, (11) can be expressed as

X + Em = (� + 
(Em))̂�m, (13)

2 Since �̂ is a square matrix, one may also write �̂m = �̂
−1

X̂. Eq. (12)
is the standard least-squares expression.
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where both Em and 
(Em) are perturbation terms, Em → 0
w.p.1 as m → ∞, and 
(·) is a continuous function of its
argument satisfying 
(E) → 0 as E → 0.

Since � has a uniformly bounded inverse and 
(Em) → 0,
w.p.1, � + 
(Em) is invertible w.p.1 for sufficiently large m. It
follows that for sufficiently large m, by (13)

�TX + �TEm = (�T� + �T
(Em))̂�m.

This implies that

�̂m = (�T� + �T
(Em))−1(�TX + �TEm)

→ (�T�)−1�TX = �

w.p.1 as m → ∞. �

5. Joint identification of distribution functions and system
parameters

The developments above rely on the knowledge of the dis-
tribution function F(·) or its inverse. However, in most appli-
cations, the noise distributions are not known, or only limited
information is available. On the other hand, input/output data
from the system contain information about the noise distribu-
tion. By viewing unknown distributions and system parame-
ters jointly as uncertainties, we develop a methodology of joint
identification.

To estimate the distribution function � = F(�), one needs
interpolation data in the form of �i = F(�i ), i = 1, 2, . . . , T .
When F(·) is not parameterized, estimation of F can become
sufficiently accurate only if the data points {�i} are sufficiently
dense, rendering an estimation problem of high complexity.
Consequently, we adopt a parametrization approach for F(·).

Our approach involves three key ideas: (a) F(·) is approxi-
mately parameterized by a model with unknown parameter �.
(b) We have shown that the empirical measure �j

m is an approx-
imate of F(C − �j ), where �j is to be estimated as well. Since
the underlying system is linear, when the input uk is scaled
to �uk and the threshold C is shifted to Ci , we shift the data
point from F(C − �j ) to F(Ci − �i�

j ). This allows us to gen-
erate more data points for estimation of F. (c) Since �j is also
unknown, we estimate jointly �j and �. As a result, we can
simultaneously estimate �j for system identification and � for
distribution functions.

5.1. Parameterized distribution functions

Suppose that the unknown noise distribution function is F(·)
that is approximated by a parameterized model F(z, �), where
�=[�1, . . . , �L]T is the unknown model parameter. For a given
class F of possible distribution functions, the representation
error of F(z) ∈ F by F(z, �) is

� = sup
F∈F

inf
�

sup
z∈S

|F(z) − F(z, �)|, (14)

where S is the union of supports of F ∈ F.

For a given F ∈ F, if the corresponding minimizer of (14)
is �, then

F(z) = F(z, �) + �(z) (15)

with |�(z)|��, ∀z ∈ S. When � is estimated from the data, its
estimate �̂ induces an estimated distribution function F(z, �̂).
The overall representation error becomes

F(z) − F(z, �̂) = F(z, �) − F(z, �̂) + �(z).

When a class F of distribution functions is given, explicit struc-
ture of the parametrization may become apparent. As an expla-
nation, we note the following two cases.

(1) If F is the class of normal distributions with unknown mean
� and variance �2, then F(z)=F0((z−�)/�), where F0(z)

is the standard normal distribution of � = 0 and �2 = 1. In
this case, F can be parameterized by �=[�, �2]T with �=0.

(2) Suppose F is a uniform distribution of a fixed but unknown
interval S=[a, b]. For z ∈ S, F(z) is completely param-
eterized by F(z)=�1 +�2z with �= 0. On the other hand,
if the uniform distribution is known to have zero mean,
then S = [−�, �] and

F(z) = z

2�
+ 1

2
, z ∈ S.

In these examples, the parametrization F(z, �) comes nat-
urally and represents F(z) precisely for all z ∈ S. However,
in general one may need to use more generic structures of
parametrization. For example, for computational convenience,
it is common to use a set of L base functions pj (·), j =1, . . . , L

to represent F(·). Then

F(z, �) =
L∑

j=1

�jp
j (z) = pT(z)�, (16)

where p(z) = [p1(z), . . . , p�(z)]T.
It is noted that some routine modifications to (16) may be

needed. For example, suppose polynomials of z are used as base
functions. If F(z) is a normal distribution, then for any finite L,
F(z) cannot be well approximated by F(z, �) over all z ∈ R.
In this case, one may limit (16) to a finite interval [a, b] and
modify F(z, �) for z /∈ [a, b] so that F(z, �) decreases towards
0 for z → −∞ and F(z, �) increases towards 1 when z → ∞.
Since these techniques are standard in function approximations,
they will not be discussed further.

5.2. Joint identification problems

The main idea of our approach is to explore input scal-
ing, possibly together with threshold shifting, to provide joint
information on the unknown distribution function and system
parameters. Due to parametrization of the uncertainty set F,
identification of F is reduced to parameter estimation of �.

To be more specific, the 2n-periodic full-rank input u em-
ployed in the previous section can be expanded by scaling: let
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�i , i = 1, . . . , � be � nonzero scaling factors. Define ui = �iu.
Note that by linearity of the system, when the input is ui , for a
given j =1, . . . , 2n the corresponding output from (5) becomes

yi
2nl+j = �i�

j + dj+2ln, l = 0, 1, . . . , m − 1.

In addition, the threshold C may also be shifted to Ci .
Under the periodic signal u, scaling factors �i , and thresholds

Ci , let the corresponding sequences of the sensor output be
{si

k}. Now, the empirical measures

�j
m(i) = 1

m

m−1∑
l=0

si
2nl+j → �j (i), w.p.1. (17)

The limit of the empirical measures satisfies, for a given j =
1, . . . , 2n,

�j (i) = F(Ci − �i�
j , �), i = 1, . . . , �, (18)

which will be used to calculate � = [�1, . . . , �2n]T and �.
By Theorem 3, when uk is 2n-periodic and full rank, � can

be identified from �. As a result, joint identification of � and �
is reduced to joint identification of � and �.

5.3. Richness conditions for joint identification

An essential property for identifying � and � is that the
Eqs. (18) have a unique solution. It is noted that for a given j,
the � equations

�j (i) = F(Ci − �i�
j , �), i = 1, . . . , �,

contain L + 1 unknowns: �j and �. Hence, we should take
��L + 1. Since this applies to each �j , we will concentrate
only on a generic expression

�(i) = F(Ci − �i�, �), i = 1, . . . , �. (19)

If Ci and �i are selected such that (19) has a unique so-
lution � and �, then by repeating the procedure for � = �j ,
j =1, . . . , 2n, (18) will have a unique solution � and �. Denote
� = {(Ci, �i ), i = 1, . . . , �}.

Suppose the prior information on � and � is that [�T, �]T ∈
� ⊆ RL+1.

Definition 2. Given a parametrization F(z, �), a set of pairs
� = {(Ci, �i ), i = 1, . . . , �} is said to be sufficiently rich for
joint identification of � and � if under �, (19) has a unique
solution � and � in �.

Remark 1. A sufficient condition for � to be sufficiently rich
is that the � × (L + 1) Jacobian matrix

J =

⎡⎢⎢⎢⎢⎣
�F(C1 − �1�, �)

��
−�1

�F(C1 − �1�, �)

�(C1 − �1�)
...

...
�F(C� − ���, �)

��
−��

�F(C� − ���, �)

�(C� − ���)

⎤⎥⎥⎥⎥⎦
is full rank for all [�T, �]T ∈ �.

Example 4. Suppose F is a normal distribution function with
unknown � and �, F(z)=F0((z−�)/�), where F0 is the normal
distribution of � = 0 and � = 1. Then (19) becomes

�(i) = F0((Ci − �i� − �)/�), i = 1, 2, 3.

Define xi = F−1
0 (�(i)), i = 1, 2, 3. We have

xi = Ci − �i� − �

�
, i = 1, 2, 3

or[
C1 −�1 −1
C2 −�2 −1
C3 −�3 −1

] [ 1/�
�/�
�/�

]
=

[
x1
x2
x3

]
.

In this case, (19) has a unique solution if the matrix

M =
[

C1 −�1 −1
C2 −�2 −1
C3 −�3 −1

]

is full rank. For example, if C1 = 1; C2 = 2; C3 = 4; �1 = 1;
�2 = 3; �3 = 5, then it can be calculated that

M =
[1 −1 −1

2 −3 −1
4 −5 −1

]
,

which is full rank for any �, �, �.
In this example, it is easy to verify that shifting the threshold

is necessary for M to be full rank. Indeed, if C1 =C2 =C3 =C,
then M is not full rank. In fact the expression

Ci − �i� − �

�
= C − �

�
− �i

�

�

cannot be used to determine three parameters �, �, �.
On the other hand, if it is known that the noise is zero mean,

namely, � = 0, then one may use a fixed threshold. In this case
we have

x1 = C

�
− �1

�

�
, x2 = C

�
− �2

�

�
.

� and � can be solved uniquely if �1 �= �2.

5.4. Identification algorithms of system parameters and
distribution functions

Note that the event {yi
j+2ln �Ci} is the same as {dj+2ln �Ci−

�i�
j }. Then �j

m(i) is precisely the value of the m-sample em-
pirical distribution F̂m(x) of the noise d at x = Ci − �i�

j :
�j
m(i) = F̂m(Ci − �i�

j ). Consequently, in consideration of
parameterized models of F, over � input sequences we obtain
the following � sample values of F(z, �) at

�j
m(i) = F(Ci − �i�

j , �) + e
j
m(i) + �, i = 1, . . . , �,

where ej
m(i) is the identification error and � is the representa-

tion error in (15).
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For notational simplicity, we shall use generic symbols �=�j ,
�m(i) = �j

m(i), and em(i) = e
j
m(i) for algorithm derivations.

Hence, consider

�m(i) = F(Ci − �i�, �) + em(i) + �, i = 1, . . . , �.

In general, parametrization F(z, �) is a nonlinear mapping
with respect to �. Consequently, nonlinear equations �m(i) =
=F(Ci − �i�, �̂) will be used to derive an estimate �̂. For sim-
plicity of discussions, we will present our algorithms for linear
parametrization since it renders a simpler sequential procedure.

By the linear representation of F(z) in (16), we have that for
i = 1, . . . , �,

�m(i) = pT(Ci − �i�)� + �(Ci − �i�) + em(i).

By defining �m =[�m(1), . . . , �m(�)]T and P(�)=[p(C1 −
�1�), . . . , p(C� − ���)]T, � = [�(C1 − �1�), . . . ,�(C� −
���)]T , Ẽm =[em(1), . . . , em(�)]T, we obtain the relationship

�m = P(�)� + � + Ẽm. (20)

The goal here is to select � and � to minimize ‖�m(�, �) −
P(�)�‖2

2, where ‖ · ‖2 is the Euclidean norm. The following
joint identification algorithm is introduced.

We shall write (20) as

� = P(�)� + � + Ẽ.

For any given �, if the corresponding P(�) is full rank, the
optimal least-squares estimation error for � is

V (�) = ‖(I − P(�)(P T(�)P (�))−1P T(�))�‖2
2.

Then the following optimal line search optimization is con-
ducted:

min
�

V (�). (21)

Denote the optimal solution by �̂. Then

�̂ = (P T (̂�)P (̂�))−1P T (̂�)�. (22)

This algorithm is based on the consecutive-marginal opti-
mization

inf
�

(
inf
�

‖� − P(�)�‖2
2

)
= inf

�
V (�). (23)

Observe that in general, the joint identification

inf
�,�

‖� − P(�)�‖2
2 (24)

is a nonlinear optimization problem, which bears higher com-
putational complexity. Although for a finite observation, the
consecutive optimization (23) may not be equivalent to the es-
timates from the joint optimization (24), convergence results
on �̂ and �̂ can be established.

Note that for algorithm execution, (23) will be repeated for
� = �j , j = 1, . . . , 2n. This understanding will be assumed for
the rest of the paper and will not be reiterated.

5.5. Convergence analysis

We now derive convergence properties of �̂ and �̂.

Assumption A2. {dk} is a sequence of independent and iden-
tically distributed (i.i.d.) random variables whose distribution
function F(·) together with its inverse F−1(·) is differentiable.
F(·) is unknown but belongs to a class F.

Theorem 4. Suppose that � = {(Ci, �i ), i = 1, . . . , �} is suf-
ficiently rich. Under Assumption A2 and representation error
bound (14), for any compact subset S ⊂ R,

lim
m→∞ sup

z∈S

|F(z, �̂m) − F(z)| → W, w.p.1,

where |W |��� for some constant � > 0.

Proof. By virtue of the well-known Glivenko–Cantelli Theo-
rem (Billingsley, 1968, p. 103), |F̂m(z)−F(z)| → 0 w.p.1, and
the convergence is uniform on any compact subset. Since both
F(·) and F−1 are continuous, and

F(z) = pT(z)� + �(z)

w.p.1, when m → ∞, for i = 1, . . . , �,

F(Ci − �i�) = pT(Ci − �i�)� + �(Ci − �i�).

Or to put it into a vector form

� = P� + �.

Since � is sufficiently rich, P −1 exists. Hence, by the least-
squares method, we obtain

�̂m = (P TP)−1P T�

and

�̂m − � = (P TP)−1P T�,

which implies

‖̂�m − �‖2 ��1�,

for some constant �1 > 0. Consequently, for some �2 > 0,

|F(z, �̂m) − F(z)|� |pT(z)(� − �̂m) + �(z)|
��2�1� + � = ��. �

Theorem 4 implies a bound on estimation errors of �.

Theorem 5. Under Assumption A2 and the representation of
error bound (14),

lim sup
m→∞

|̂�m − �| → �0� w.p.1, j = 1, . . . , 2n,

for some constant �0 > 0.

Proof. We can write

F(Ci − �i�) = F(Ci − �i�, �̂m) + � + ẽm,
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where {̃em} is a sequence of random errors satisfying ẽm → 0,
w.p.1. Since F−1(·) is differentiable, we conclude that

|(Ci − �î�) − (Ci − �i�)|��1|F−1(�̃ + em)|

for some constant �1. The continuity of F−1(·) implies that
F−1(� + ẽm) → F−1(�) w.p.1, as m → ∞. As a result,

lim sup
m→∞

|̂� − �|��0�,

as stated. �

In particular, if F is well represented by the parameterized
model, i.e., � → 0, then �̂m → � w.p.1 as m → ∞.

6. Algorithm flowcharts and an illustrative example

Our algorithms for joint identification of system parameters
and noise distributions are summarized in Fig. 3.

We now use an example to demonstrate the identification
algorithms presented so far.

Suppose that the true plant is a first-order system

xk = −a0xk−1 + b0uk−1, yk = xk + dk ,

where a0 = 0.4; b0 = 1.6. {dk} is an i.i.d. sequence, uniformly
distributed on [−1.2, 1.2]. Hence, the true distribution function
is �=F(z)=(1/2.4)z+0.5 for z ∈ [−1.2, 1.2]. The true system
parameters and the distribution function interval are unknown.

Estimate plant parameters � by (12)

Construct estimated plant output
and regressors in (10) and (11)

Select a 2n-periodic full rank input u

Select a sufficiently rich set (� pairs) of

scaling factors �i and thresholds Ci

For each i = 1,2,…, �
Use the input �iu and threshold Ci

Measure sensor outputs

For each j = 1,2,…,2n
Solve the � equations in (18)

for estimates of  α and γ j

For each i = 1,2,…, �
Calculate 2n empirical measures in (17)

Recursion

Experimental
Design

Identification
Experiments

Step 1:
Identify Noise
Distribution

and
Plant Outputs

Step 2:
Identify

Plant Parameters

Fig. 3. An algorithm flowchart.
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Fig. 4. Joint Identification of distribution functions and plant parameters.

(1) Experimental design: Here we need to select parametriza-
tion of the unknown distribution function, input signal,
scaling, and threshold selections.
(a) For this example, we assume the linear function

parametrization of F: � = F(z, �) = �1 + �2z. Since
this is a correct parametrization, the function repre-
sentation error � = 0.

(b) To identify the two system parameters a0 and b0, the
base input is 2-periodic with u1 =0.7; u2 =0.2, which
is full rank.

(c) Signal scaling factors �i and thresholds Ci are to be
selected such that (19) can be solved uniquely for �
and �. In this application, we have

�(1) = �1 + �2(C1 − �1�),

�(2) = �1 + �2(C2 − �2�),

�(3) = �1 + �2(C3 − �3�).

This system has a unique solution if

M =
[1 C1 �1

1 C2 �2
1 C3 �3

]

is full rank. For example, we use the following three
sets of values: �1 =0.3, C1 =−0.4; �2 =0.5, C2 =0.4;
�3 = 0.8, C3 = 0.8. This leads to

M =
[1 −0.4 0.3

1 0.4 0.5
1 0.8 0.8

]
,

which is full rank.
(2) Identification: Identify � and �.

(a) the system output yk is simulated by

yk = −a0xk−1 + b0uk−1 + dk

for a total of 900 sample steps.
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(b) The sensor outputs are observed and empirical mea-
sures are calculated.

(c) The recursive identification algorithms (21) and (22)
are applied to identify the plant parameters and distri-
bution function simultaneously.

(3) Evaluation: The plant parameter estimates are compared
to the true values a0 =0.4, b0 =1.6; and distribution func-
tion parameters [�1, �2] are compared to their true values
[0.5, 1/2.4]. The results are shown in Fig. 4, where relative
errors are plotted as a function of sample sizes.

7. Recursive algorithms

In this section, we develop a class of recursive algorithms
for estimating � and �. In lieu of the line search (21) and least-
squares procedure (22), the estimate �̂m will be constructed
via an adaptive filtering algorithm to reduce the computational
complexity, and estimate �̂m will be recursified. This section is
divided into three parts: first, we present the algorithms. Then,
we establish the convergence of the schemes. Finally, we make
some additional remarks on alternatives.

The identification problem involves several indices which
can be confusing in our recursive algorithms: (a) the time in-
dex k; (b) the time-block index m. Iteration from m to m + 1
represents an acquisition of 2n observation points on sk; (c)
the cyclic index j = 1, . . . , 2n. This index indicates rotation of
parameters �j in identification, in other words, indicating one
of the sequential optimization problems; (d) the index i in �i ,
i = 1, . . . , �. This represents the ith scaling factor �i is applied
at input.

For example, due to the cyclic nature, �̂j can only be updated
once every 2n data points. As a result, it is indexed as �̂j

m. On
the other hand, all data points contain information on �. Hence,
it can be indexed as �̂k . In case that we choose to update �̂ at
the same time of updating �j , we shall use �̂m instead.

7.1. Recursive schemes

The following two typical classes of recursive algorithms
will be considered.

(A) Adaptive filtering algorithms: For each i = 1, . . . , � of
scaling values at the input, and j = 1, ..., 2n⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�j
m+1(i) = �j

m(i) − 1
m+1 [�j

m(i) − sj+2(m+1)n],
�̂j
m+1(i) = �̂j

m(i) + pm[�j
m(i)−pT

m�̂j
m(i)]

m+1 ,

�̂j
m+1(i) = �̂j

m(i) + 1
m+1

[̂
�j
m(i) − Ci−F̃−1(�j

m(i),̂�m(i))

�i

]
,

(25)

where

pm = p(Ci − �î�
j
m),

with p(·) given in (16), and F−1(z, �̂) denotes the inverse of
F(z, �̂) when �̂ is used. Note that in fact, pm is j-dependent,
so it should have been written as p

j
m. We have suppressed j-

dependence for notational simplicity.

(B) Combined adaptive filtering and least-squares algorithm:
For each i=1, . . . , � of scaling values at the input, j =1, ..., 2n

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�j
m+1(i) = �j

m(i) − 1
m+1 [�j

m(i) − sj+2(m+1)n],
�̂j
m+1(i) = �̂j

m(i) + am�mpm[�j
m(i) − pT

m�̂j
m(i)],

�m+1 = �m − am�mpmpT
m�m,

am = (1 + pT
m�mpm)−1,

�̂j
m+1(i) = �̂j

m(i) + 1
m+1

[̂
�j
m(i) − Ci−F−1(�j

m(i),̂�j
m(i))

�i

]
.

(26)

7.2. Asymptotic properties of recursive algorithm (25)

In what follows, we present asymptotic properties of the
algorithms given in (25) and (26). To proceed, we need some
conditions, which are listed below.

Assumption A3. The following system of differential equa-
tions

⎧⎨⎩
d
dt

�ji(t) = p(Ci − �ji(t))F (Ci − �j )

−p(Ci − �ji(t))pT(Ci − �ji(t))�ji(t)
d
dt

�ji(t) = �ji(t) −
[

Ci−F−1(F (Ci−�j�i ),�
ji (t))

�i

] (27)

has a unique solution for each initial condition. In addition,
(27) has a unique asymptotically stable point (�j,0, �j,0) in the
sense of Lyapunov.

Assumption A4. The following conditions hold:

• The sequences {̂�j
m} for j = 1, ..., 2n are bounded w.p.1.

• Denoting Aj = p(Ci − �i�
j,0)pT(Ci − �i�

j,0), Aj is sym-
metric and positive definite.

• Both p(·) and F−1(·, ·) are continuous.

Remark 2. To ensure the boundedness, we can use a projection
algorithm

�̂j
m+1(i) = �G

⎡⎣̂�j
m(i) +

�̂j
m − [Ci−F−1(�j

m(i),̂�m)]
�i

m + 1

⎤⎦ ,

where �G is the projection operator onto the bounded set G
(see (Kushner & Yin, 2003) for more details). Owing to the use
of {sm}, {�j

m(i)} is bounded. Note that we can choose G to be
as simple as a box, and choose it to be large enough so that
it contains the true parameter �j . However, for simplifying no-
tation and for convenience, we have assumed that the bound-
edness of {̂�j

m} in (A4). The continuity of p(·) implies that
F(·, ·) is also continuous since it is linear in �. We require the
matrix Aj be positive definite, which is essentially a solvability
or identifiability condition.
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We claim that {̂�j
m(i)} is bounded w.p.1 uniformly in m. To

see this, write

�̂j
m+1(i) = Am,0̂�

j
0(i) +

m∑
l=0

1

l + 1
Am,l[Aj − plp

T
l ]̂�j

l (i)

+
m∑

l=0

1

l + 1
Am,lpl�

j
l , (28)

where

Am,l =
{ m∏

i=l+1

(
I − 1

i + 1
Aj

)
, l < m,

I, l = m.

Note that following the convention for pm, we suppressed the
j-dependence in the notation Am,l . Thus, taking norm in (28),
an application of the Gronwall’s inequality yields that

|̂�j
m+1(i)|�K1,m exp(K2,m), (29)

where

K1,m = |Am,0̂�
j
0(i)| +

m∑
l=0

1

l + 1
|Am,l ||pl�

j
l |,

K2,m =
m∑

l=0

1

l + 1
|Am,l ||Aj − plp

T
l |.

With

am,l =
{ m∏

i=l+1

(
1 − 1

i + 1
�

)
, l < m,

1, l = m,

where � is the minimal eigenvalues of Aj ,

m∑
l=0

1

l + 1
|Am,l |�

m∑
l=0

1

l + 1
am,l

= K0

�

m∑
l=0

[am,l+1 − am,l] = K0(1 − am,0) < ∞. (30)

Note that in the above, we used K0 as a generic positive constant
whose value may change for different appearances. The bound
in (30) together with (28), the boundedness of {�j

m} and {̂�j
m},

implies that K1,m is bounded w.p.1 uniformly in m, so is K2,m.
The w.p.1 boundedness (uniform in m) of {̂�j

m(i)} then follows
from (29).

Next, consider the joint process z
ji
m = (̂�j

m(i), �̂j
m(i))T. Set

tm =
m−1∑
l=0

1

l + 1
, and m(t) = max{m : tm � t}.

Define the piecewise constant interpolation

z0(t) = zm for t ∈ [tm, tm+1) and zm(t) = z0(t + tm).

Note that zm(·) is a shifted sequence for bringing the asymptotic
properties of the sequence to the foreground. We also define the

component of the interpolation zm,ji(·) as �m,i(·) and �m,ji(·).
The boundedness on {�j

m(i), �̂m(i), �̂j
m(i)} yields that zm,ji(·)

is uniformly bounded. The continuity condition in Assumption
A4 and the continuity of the distribution function and its inverse
imply zm,ji(·) is equicontinuous in the extended sense as de-
fined in Kushner and Yin (2003, p. 102). By the Arzela–Ascoli
theorem (Kushner & Yin, 2003, p. 102) applied to a sequence
of equicontinuous functions (in the extended sense), we can
extract a convergent subsequence zm′,j i (·) such that zm′,j i (·)
converges to z(·) w.p.1 and the convergence is uniform on any
bounded interval. For convenience, in what follows, we simply
write m′ as m.

Using the usual ODE approach (see (Kushner & Yin, 2003)),
we can show (�m,ji(·), �m,ji(·)) → (�ji(·), �ji(·)). Consider-
ing the pair (̂�m, �̂j

m) jointly, �ji(·) and �ji(·) as components
of the pair satisfy the differential equation in (27).

Next, let {�m} be a sequence of positive real numbers satisfy-
ing �m → ∞ as m → ∞. Then it can be shown (see (Kushner &
Yin, 2003) for more details) that (�m,ji(·+�m), �m,ji(·+�m)) →
(�0,j i , �ji,0) as m → ∞. Thus, (̂�j

m(i), �̂j
m(i)) → (�j,0, �j,0)

w.p.1 as m → ∞.
Note that the stationary point �0,j i is given by

�0,j i = [Ci − F−1(F (Ci − �0,j i�i ), �
0,i )]/�i .

As in the previous section, it can be shown that for some �0 > 0,

lim sup
m→∞

|Ci − F−1(�j
m) − �j,0|��0�.

Summarizing what has been proved, we obtain the following
theorem.

Theorem 6. Assume A1–A4. {�j
m, �̂m, �̂j

m} converges w.p.1.
Moreover, we have the following upper bound on the deviation
�̂j
m − �j :

lim sup
m→∞

|̂�j
m − �j |��0�, w.p.1 for some �0 > 0.

7.3. Remarks

The entire procedure consists of an inner loop and an outer
loop. The purpose of the inner loop is to obtain the empirical
distribution and to estimate �. We first update the empirical pro-
cess recursively. Then we construct a sequence of estimates of
� by using a recursive least-squares-type method. After carry-
ing out a number of iterations in the inner loop, we update the
estimate of �j one step in the outer loop via function evaluation
and the utility of F(·, �). To some extent, the approach can be
considered as a two-time-scale and two-stage approximation,
in which the inner loop is updated more frequently than that of
the outer one.

As a convention, we use � and m to denote the indices in what
follows. For a sequence of scalar or vector {zk}, by the notation
z�m
k , we mean that z�m

0 = z�m and z�m
k = z�m+k . Algorithm (25)
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can be modified as follows. For each � and m, let⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�j,�m
k+1 = �j,�m

k − 1
k+1�j,�m

k + 1
k+1 sj+2(�m+k+1)n,

0�k < m,

�̂�m
k+1 = �̂�m

k + 1
(k+1)

p�m[�j,�m
k − pT

�m�̂�m
k ], 0�k < m,

�̂j

(�+1)m = �̂j
�m + [̂�j

�m− [Ci−F−1(Ci −̂�
j
�m

,̂��m
0 )]

�i
]

�m
.

Moreover, for tracking slightly parameter variation, we can use
a constant step size � > 0. For each � and m, let⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�j,�m
k+1 = �j,�m

k − 1
k+1�j,�m

k + 1
k+1 sj+2(�m+k+1)n,

0�k < m,

�̂�m
k+1 = �̂�m

k + �p�m[�j,�m
k − pT

�m�̂�m
k ], 0�k < m,

�̂j

(�+1)m = �̂j
�m + �

[̂
�j
�m − [Ci−F−1(Ci−̂�j

�m,̂��m
0 )]

�i

]
.

8. Conclusions

When sensors are nonlinear and non-smooth such as the
switching sensors investigated in this paper, system identifica-
tion for plants in ARMA structures usually becomes difficult,
due to lack of constructive and convergent identification algo-
rithms. This paper introduces a two-step approach to resolve
this complicated problem. This approach is further extended to
accommodate the common scenarios in which noise distribu-
tion functions are unknown. Convergence properties of all the
algorithms are established.

The main results of this paper can be extended in several
directions. Practical systems are infinite dimensional. Intro-
duction of unmodeled dynamics and system order estimation
will accommodate model uncertainties for practical systems.
Similar results can also be derived for identification of
nonlinear systems of simple structures.
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